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 Internet video service providers: Youtube, Netflix, and many other.  

 Consumer IP traffic will grow at a compound annual growth rate (CAGR) of 34%. 

 By 2012, Internet video will account for over 50% of consumer Internet traffic. 

 The sum of all video traffic (including  TV,  file sharing etc) will reach 90% of total IP 

traffic in 2015. 
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Significant Growth of Internet Video Traffic 



Video Streaming in the Internet:  

Current Status 

 Video streaming directly from 
servers or CDNs (Content 
Distribution Networks) is costly 

 

 In the US, this has been the 
dominant mode for video streaming 
 Credit Suisse estimated Youtube 

bandwidth cost in 2009 :  $360M per 
year  

 Google likely paid significantly less 
due to peering with other ISP 

 

 Licensing of video content could 
cost comparably or even more. 
 Netflix’s lost deal with Starz:  

$300M for possibly a 5-year license 

server 

CDN 

cache 

client client 

client 
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P2P Video Streaming: Current Status 

 Peer-to-peer (P2P) video streaming 

can potentially be much more 

scalable  

 Each client also contributes its 

upload capacity. 

 In Asia, P2P streaming has become 

commercially successful 

 PPLive, UUSee, PPStream, etc. 

 However, content has primarily been 

free or pirated 

 High-value content appears to also 

move towards the server mode 

 

Why hasn’t P2P caught on yet for high-value content?  

server 

client client 

client 
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P2P Video Streaming: Issues 

 Copyright issues? 

 Lack of quality-of-service 

guarantees? 

 

 Difficulty to maintain QoS in 

P2P systems: 

 Client upload capacity is time-varying 

 Peer “churns” 

 Large scale 

 Decentralized view and operation 

 

server 

client client 

client 

Why hasn’t P2P caught on yet for high-value content?  
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Gap Between Practice and Theory 

 Theoretical understanding of P2P streaming performance has 

significantly lag behind practice, which may have impeded 

further advance of P2P streaming. 

 Our Focus: What is the best streaming rate Cf  that  

a live-streaming P2P system can  

reliably support? 

 Assuming upload capacity is the  

only constraint [Kumar et al ‘07]: 

 

 

 

 Question: Can this upper bound  

be attained?  
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P2P Streaming Capacity 

 Assume a complete graph: every peer can serve all other 

peers simultaneously [Mundinger et al ’05, Chiu et al ’06, 

Kumar et al ‘07] 

 Each client gets 

 

 

 

 

 

 How practical is this  

analysis? 
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P2P Streaming Capacity 

Such theoretical analysis is far from the reality in 

practical P2P systems! 

 

 Real P2P streaming systems are sparsely connected:  

 Each peer only knows a small subset of other peers 

(neighbors). 

 Infeasible for each peer to know all other peers! 

 

 Real P2P systems are distributed:  

 No central entity can have the global/up-to-date knowledge 

to perform such a perfect rate allocation. 
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Sparsely-Connected P2P Systems 

 A multi-tree topology [Liu et al. 2010] 

 Still a centralized construction. 

 More recent work uses distributed  

Markov  approximation [Zhang  

and Chen, 2012] 

 If a peer close to the root  

leaves or its upload capacity 

decreases, significant  

performance  

disruption will occur. 

 

Open Question:  

 Can we achieve close-to-optimal streaming capacity with sparse 

connectivity and decentralized control that are robust against peer churns 

and variations of upload capacity ?   
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Our Contribution 

 We show that a simple distributed scheme is sufficient to 
achieve close-to-optimal streaming capacity with high 
probability for large P2P systems. 

 Each peer has a small number of downstream neighbors  
M = O(log N) 

 Each peer can choose neighbors uniformly randomly 

 Each peer evenly divides its upload capacity among the M neighbors 

 Our results reveal important insights into the dynamics of large 
P2P systems. 

 We design improved control schemes based on these insights 
that further improve the system performance. 

 Our work provides an important step towards understanding 
and controlling QoS in large and unreliable P2P streaming 
systems.  
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Overview 

 System Model 

 Single-Channel: Uniform Rate Allocation 

 Single-Channel: Adaptive Rate Allocation 

 Multi-Channel Live Streaming 

 Conclusion and Discussion 
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System Model: Single-Channel P2P Live 

Streaming with Random Peer Selection 

s 
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N: number of peers 

ui: the upload capacity 

of peer i 

us : the upload 

capacity of server 
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 Random peer-selection: 

 Each peer randomly selects M downstream neighbors 

 Server randomly selects M ON peers as downstream neighbors 

 Easy to implement and robust to peer churns. 

 Cij: the capacity that peer i contributes to peer j. 

 Cij=0 if peer i is OFF or peer j is not a downstream neighbor of peer i 
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System Model 
 Streaming rate to destination peer t:  

 The minimum cut between s and t: Cmin(s  t) 

 

 

 

 

 

 

 

 

 The streaming rate of the entire system: 
 The minimum cut across all destination peers t: 

 

 

 Can be achieved in a distributed manner by network coding [Ahlswede 
et al 2000] or a latest-useful-chunk transmission policy [Massoulie and 
Twigg 2008] 
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Problem Statement 

 Cf: The optimal streaming capacity assuming complete 

connectivity and centralized control 

 

 

 Research Problems:  

 

 How much performance penalty (compare to the optimal Cf) 

is incurred due to random peer-selection? 

 

 Are there simple and robust rate-allocation schemes that can 

achieve close-to-optimal capacity with minimal overhead?  
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Overview 

 System Model 

 Single-Channel: Uniform Rate Allocation 

 Single-Channel: Adaptive Rate Allocation 

 Multi-Channel Live Streaming 

 Conclusion and Discussion 
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Single-Channel: Uniform Rate-Allocation 

s 
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N: number of peers 

ui: the upload capacity 
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us : the upload 

capacity of server 
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 Uniform rate-allocation:  

 Each peer evenly divides its upload capacity to its M downstream neighbors 

 Same for server 

 Cij: the link capacity from peer i to peer j. 
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Main Result 

 For any e 2 (0,1) and d >1, there exists a > 0 such that 

if  M = a logN, then 

 

 

 

 Even with simple random peer-selection and uniform 

rate-allocation, the system can achieve close-to-optimal 

streaming capacity with very high probability! 
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Implications 

 Sparse connectivity is sufficient! 

 M = a logN 

 Simple and decentralized control 

 Random peer selection and uniform rate-

allocation 

 Larger is better! 

 The larger the network size, the easier to achieve 

close-to-optimal capacity 

 Robustness 

 Even if a peer leaves, only its upstream peer needs 

to re-select a downstream neighbor. 

 When a peer switches from ON to OFF,  its 

neighbors do not need to change anything (unless 

it is connected to the server directly). 

 No need to reconstruct the global topology! 

 .g 18 

Large P2P streaming 

systems are in fact 

extremely  

 

scalable  

 
 

and  

 

 

robust! 



Intuition Behind the Main Result 

 Fix a destination peer t. Suppose that peer  t is ON. 

 Let Y be the total number of ON peers: Y ¼ Np 

 Cn : the random capacity of a cut that has n ON peers on the server side 
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Intuition Behind the Main Result 
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“first cut” C0 
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“last cut” CY-1 

 Two special cases: 

 

 

 For all other n, we have 

 

 

 

 Since the number of edges in a cut,   nM(Y-n)/N,    is large when M andN increase, 

the capacity of any cut Cn  should be no less than (1e) Cf with high probability 
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Insights for P2P Protocol Design 

The most critical cut is the last cut 

CN-1 

 The probability that CN-1 fails (less 

than (1-ε) of optimal streaming rate 

Cf) is much larger than the 

probability that any other cut fails 

 

Two main reasons: 

 The expected capacity E[CN-1] is 

the smallest 

 The expected number of edges is 

the smallest:  nM(N-n)/N =M 

when n=N-1 
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Improved P2P control scheme should focus on 

improving the capacity of the last cut 
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Insights for P2P Protocol Design 

ON/OFF status of each 
peer’s upload capacity: 

 

 A common wisdom is that 
peers close to the server 
should choose ON peers as 
downstream neighbors 

 

 Our analysis indicates that 
only the server needs to be 
careful choosing ON peers.  

 

Low-overhead P2P control scheme could focus on 

peer-selection and recovery at the server only. 

s 

t 
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Insights for P2P Protocol Design 

Number of neighbors that each peer needs: M = a logN 

 

 In order that  

 

 

    the constant a must be 

 

 

 Require a larger number of neighbors when 

 faster convergence rate (larger d) 

 fewer high bandwidth users (smaller p) 

 higher streaming rate requirement (smaller e ) 

 This factor may be further reduced by improving the capacity of the last cut 

2

4 sdu

pu
a

e


min min 2 1

1
( ( ) (1 ) [ ])f d

P C s V E C O
N

e 

 
     

 

23 



Simulation Result – Single Channel 

p = 0.9 

e = 0.3 
p = 0.5 

e = 0.3 

p = 0.9 

e = 0.2 p = 0.5 

e = 0.2 
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Overview 

 System Model 

 Single-Channel: Uniform Rate Allocation 

 Single-Channel: Adaptive Rate Allocation 

 Multi-Channel Live Streaming 

 Conclusion and Discussion 
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Adaptive Rate Allocation: Motivation 

 Number of neighbors each peer needs M = a logN 

 

 

 As ²  0, ® increases inversely proportional to ²2 

 The number of neighbors of each peer can still be quite large 

 Recall that the most critical cut is the last cut CN-1 

 The capacity that each peer receives directly from its 

immediate upstream neighbors 

 

 Will improving the capacity of the last cut reduce a ? 
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From Uniform to Adaptive Rate Allocation 

 Adaptive rate-allocation:  Balance the capacity of the last cut by carefully 

assigning Cij (the upload rate from peer i to peer j) 
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Caveat: no capacity guarantee on all other cuts! 
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Uniform rate-allocation: 

 Each edge from an ON peer 
contributes u/M  capacity 

 However, the number of such 

edges to a peer is random 
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Uniform versus Adaptive Rate Allocation: 

Pros and Cons 

 Uniform rate allocation 

 The last cut is the most difficult 

 Other cuts have larger capacity 

 Adaptive rate allocation 

 Balance the capacity for the last cut 

 No capacity guarantee for other cuts 

 

 Hybrid scheme  

 Reserve a fraction of the upload capacity of each peer for 

uniform rate allocation 

 Perform adaptive rate allocation with the remaining upload 

capacity 
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Hybrid Scheme - Details 

 Still perform random peer-selection 

 Each link capacity Cij consists of two parts 

 

 Reserve a fraction q of the upload capacity for uniform allocation 

 

 Take care of all other cuts with high probability 

 The capacity          for adaptive 

rate allocation is given by the 

the  solution of 

 

 

 

 The solution exists with high probability          take care of the last cut. 

 There exist fully-distributed algorithms to compute the solution. 
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Hybrid Scheme - Main Result 

 For 0.5 < q < 1, the hybrid scheme could achieve a close-to-

optimal streaming rate with high probability  
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 The dependency on small ε  is virtually eliminated! 

 Assume q =0.9, e = 0.1 

 Uniform rate allocation: a > 400dus/pu 

 Hybrid Scheme: a > 17.8dus/pu 
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Hybrid Scheme – Simulation Result 

p = 0.5 

e = 0.2 

Less than 0.4% 

About 8% 

Hybrid (N=10000) Uniform (N=10000) 
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Multi-Channel P2P networks  

 Existing P2P systems typically serve a large number of 
channels/videos at the same time 

 Traditionally, each channel is treated separately 

 Peers viewing a channel only serve other peers in the same channel 

 View-Upload Decoupling (VUD [Wu et. al. 2009]) 

 Peers can view one channel but serve/upload videos for peers in a 
different channel 

 Streaming capacity for multi-channel P2P system is improved 

 Still assume complete connectivity and centralized operation 

 Our work 

 We propose a simple distributed scheme that has a similar flavor of 
VUD  

 Close-to-optimal streaming capacity region can still be achieved for 
multi-channel systems 
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Multi-channel - System Model 

 Consider a multi-channel P2P system with J different channels 

 Nj:  the set of peers that are viewing channel j 

 Nj=| Nj | : The number of peers in channel j 

 us,j :  the capacity that server allocates to channel j  

 Rj:  the targeted streaming rate of channel j 

 For each single channel, the optimal achievable streaming rate is 

 

 

 

 For a given R,  

 some channels may have a Cf,j >Rj,           sufficient channels 

 some channels may have a Cf,j <Rj            insufficient channels 
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Multi-channel – View-Upload Decoupling 

 VUD: Some peers from the  

sufficient channels become  

helpers to help improving the 

performance of the insufficient  

channels 
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Multi-channel - Helper 

 A helper that is viewing channel k and helping channel j 

 Receives full streaming rate Rk  of the content of channel k 

 Must be ON 

 Receives a rate u/M of the content of channel j 

 All of its downstream neighbors are peers viewing channel j 
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Multi-channel: Capacity Region 

 Rj : the targeted streaming rate of channel j 

 We can define the capacity region L as the set of 

streaming rate vectors R =[R1,R2 ,…,RJ]
T such that any  

R  L is supportable by some control algorithm. 

 The largest possible capacity region 

 

 

 

 

 Given R  (1-²) L, can this rate vector R be achieved by 

a simple and distributed control scheme?  
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Multi-channel - Algorithm 

 Let Hj be the number of helpers that channel j needs 

 We would like to choose Hj so that  

 

 

 

 One solution: 

 

 

 

 Hj > 0 for an insufficient channel (needing helpers) 

 Hj < 0 for a sufficient channel (providing helpers) 
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Insufficient Channel j 

Channel k Helping Channel j 

 Each helper behaves like an OFF peer in channel k 

 Each ON peer in channel j reserves K (downstream) slots for helpers 

 Each helper finds a normal ON peer randomly from channel j as its 
upstream neighbor 

 Each helper picks M downstream peers randomly from channel j 

 Uniform rate allocation. Helpers do not connect to helpers 
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Sufficient Channel k 

K downstream 
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M-K downstream 

peers 
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Multi-channel – Main Result 

 For any e0 , d >1 and R  1eL , there exists a such that  

if M = a logN, then for all channel j 

 

 

 

 Nj: The set of peers that are viewing channel j 

 L is the largest possible capacity region. 

 

 Our proposed scheme can achieve close-to-optimal capacity with 

sparse connectivity and decentralized control.  

 Each peer still needs only O(log N) neighbors 

 Helpers are chosen randomly 
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Simulation Result – Multi-Channel 
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 Conclusion and Discussion 
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Summary 

 Close-to-optimal streaming capacity can be achieved with 
high probability using 
 O(log N) downstream neighbors for each peer 

 Random peer-selection 

 Uniform rate-allocation 

 Our results reveal important insights into the dynamics of 
large P2P streaming systems 

 Based on these insights, we design a hybrid scheme that 
further improves the system performance. 

 With “helpers”, a similarly simple scheme could also 
achieve a close-to-optimal streaming capacity region for 
multi-channel P2P systems 
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On-Going and Future Work 

 P2P  Video-on-Demand (VoD) Systems 

 Timing of each neighbor is important 

 Users may jump forward/backward 

 Cache placement policy is also critical 

 We show that simple and distributed control with sparse-

connectivity will still suffice 
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On-Going and Future Work 
 The packet scheduling problem 

 May use generation-based random linear network coding.  

 There is a tradeoff between rate, delay, and overhead 

 BATS code? 

 

 Incorporating scalable video 
 Video encoding rate may be adjusted based on the optimal streaming rate 

 Layered video 

 

 Multiple ISPs 
 Cross-ISP traffic may encounter new bottlenecks  

 Will random peer-selection and simple rate-allocation strategies still be 
sufficient? 

 

 Wireless versus wireline 
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