
The Streaming Capacity of 

Sparsely-Connected P2P Systems 

with Distributed Control 

Xiaojun Lin, Associate Professor 

School of ECE, Purdue University 

 

Joint work with Can Zhao (now at Qualcomm)  

and Prof. Chuan Wu (HKU) 



 Internet video service providers: Youtube, Netflix, and many other.  

 Consumer IP traffic will grow at a compound annual growth rate (CAGR) of 34%. 

 By 2012, Internet video will account for over 50% of consumer Internet traffic. 

 The sum of all video traffic (including  TV,  file sharing etc) will reach 90% of total IP 

traffic in 2015. 
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Significant Growth of Internet Video Traffic 



Video Streaming in the Internet:  

Current Status 

 Video streaming directly from 
servers or CDNs (Content 
Distribution Networks) is costly 

 

 In the US, this has been the 
dominant mode for video streaming 
 Credit Suisse estimated Youtube 

bandwidth cost in 2009 :  $360M per 
year  

 Google likely paid significantly less 
due to peering with other ISP 

 

 Licensing of video content could 
cost comparably or even more. 
 Netflix’s lost deal with Starz:  

$300M for possibly a 5-year license 
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client client 

client 
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P2P Video Streaming: Current Status 

 Peer-to-peer (P2P) video streaming 

can potentially be much more 

scalable  

 Each client also contributes its 

upload capacity. 

 In Asia, P2P streaming has become 

commercially successful 

 PPLive, UUSee, PPStream, etc. 

 However, content has primarily been 

free or pirated 

 High-value content appears to also 

move towards the server mode 

 

Why hasn’t P2P caught on yet for high-value content?  
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P2P Video Streaming: Issues 

 Copyright issues? 

 Lack of quality-of-service 

guarantees? 

 

 Difficulty to maintain QoS in 

P2P systems: 

 Client upload capacity is time-varying 

 Peer “churns” 

 Large scale 

 Decentralized view and operation 

 

server 

client client 

client 

Why hasn’t P2P caught on yet for high-value content?  
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Gap Between Practice and Theory 

 Theoretical understanding of P2P streaming performance has 

significantly lag behind practice, which may have impeded 

further advance of P2P streaming. 

 Our Focus: What is the best streaming rate Cf  that  

a live-streaming P2P system can  

reliably support? 

 Assuming upload capacity is the  

only constraint [Kumar et al ‘07]: 

 

 

 

 Question: Can this upper bound  

be attained?  
Client: u1 

 

Client: u2 

 

server: us 

Client: u3 

 

1min{ , }

N

s i

i
f s

u u

C u
N








6 



P2P Streaming Capacity 

 Assume a complete graph: every peer can serve all other 

peers simultaneously [Mundinger et al ’05, Chiu et al ’06, 

Kumar et al ‘07] 

 Each client gets 

 

 

 

 

 

 How practical is this  

analysis? 
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P2P Streaming Capacity 

Such theoretical analysis is far from the reality in 

practical P2P systems! 

 

 Real P2P streaming systems are sparsely connected:  

 Each peer only knows a small subset of other peers 

(neighbors). 

 Infeasible for each peer to know all other peers! 

 

 Real P2P systems are distributed:  

 No central entity can have the global/up-to-date knowledge 

to perform such a perfect rate allocation. 
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Sparsely-Connected P2P Systems 

 A multi-tree topology [Liu et al. 2010] 

 Still a centralized construction. 

 More recent work uses distributed  

Markov  approximation [Zhang  

and Chen, 2012] 

 If a peer close to the root  

leaves or its upload capacity 

decreases, significant  

performance  

disruption will occur. 

 

Open Question:  

 Can we achieve close-to-optimal streaming capacity with sparse 

connectivity and decentralized control that are robust against peer churns 

and variations of upload capacity ?   
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Our Contribution 

 We show that a simple distributed scheme is sufficient to 
achieve close-to-optimal streaming capacity with high 
probability for large P2P systems. 

 Each peer has a small number of downstream neighbors  
M = O(log N) 

 Each peer can choose neighbors uniformly randomly 

 Each peer evenly divides its upload capacity among the M neighbors 

 Our results reveal important insights into the dynamics of large 
P2P systems. 

 We design improved control schemes based on these insights 
that further improve the system performance. 

 Our work provides an important step towards understanding 
and controlling QoS in large and unreliable P2P streaming 
systems.  
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Overview 

 System Model 

 Single-Channel: Uniform Rate Allocation 
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 Conclusion and Discussion 
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System Model: Single-Channel P2P Live 

Streaming with Random Peer Selection 
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 Random peer-selection: 

 Each peer randomly selects M downstream neighbors 

 Server randomly selects M ON peers as downstream neighbors 

 Easy to implement and robust to peer churns. 

 Cij: the capacity that peer i contributes to peer j. 

 Cij=0 if peer i is OFF or peer j is not a downstream neighbor of peer i 
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System Model 
 Streaming rate to destination peer t:  

 The minimum cut between s and t: Cmin(s  t) 

 

 

 

 

 

 

 

 

 The streaming rate of the entire system: 
 The minimum cut across all destination peers t: 

 

 

 Can be achieved in a distributed manner by network coding [Ahlswede 
et al 2000] or a latest-useful-chunk transmission policy [Massoulie and 
Twigg 2008] 
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Problem Statement 

 Cf: The optimal streaming capacity assuming complete 

connectivity and centralized control 

 

 

 Research Problems:  

 

 How much performance penalty (compare to the optimal Cf) 

is incurred due to random peer-selection? 

 

 Are there simple and robust rate-allocation schemes that can 

achieve close-to-optimal capacity with minimal overhead?  
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Single-Channel: Uniform Rate-Allocation 
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 Uniform rate-allocation:  

 Each peer evenly divides its upload capacity to its M downstream neighbors 

 Same for server 

 Cij: the link capacity from peer i to peer j. 

/ ,  if peer  is ON and   

0,     otherwise 
ij

u M i i j
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Main Result 

 For any e 2 (0,1) and d >1, there exists a > 0 such that 

if  M = a logN, then 

 

 

 

 Even with simple random peer-selection and uniform 

rate-allocation, the system can achieve close-to-optimal 

streaming capacity with very high probability! 
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Implications 

 Sparse connectivity is sufficient! 

 M = a logN 

 Simple and decentralized control 

 Random peer selection and uniform rate-

allocation 

 Larger is better! 

 The larger the network size, the easier to achieve 

close-to-optimal capacity 

 Robustness 

 Even if a peer leaves, only its upstream peer needs 

to re-select a downstream neighbor. 

 When a peer switches from ON to OFF,  its 

neighbors do not need to change anything (unless 

it is connected to the server directly). 

 No need to reconstruct the global topology! 

 .g 18 

Large P2P streaming 

systems are in fact 

extremely  

 

scalable  

 
 

and  

 

 

robust! 



Intuition Behind the Main Result 

 Fix a destination peer t. Suppose that peer  t is ON. 

 Let Y be the total number of ON peers: Y ¼ Np 

 Cn : the random capacity of a cut that has n ON peers on the server side 
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Intuition Behind the Main Result 
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t 

“first cut” C0 

s 

t 

“last cut” CY-1 

 Two special cases: 

 

 

 For all other n, we have 

 

 

 

 Since the number of edges in a cut,   nM(Y-n)/N,    is large when M andN increase, 

the capacity of any cut Cn  should be no less than (1e) Cf with high probability 
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Insights for P2P Protocol Design 

The most critical cut is the last cut 

CN-1 

 The probability that CN-1 fails (less 

than (1-ε) of optimal streaming rate 

Cf) is much larger than the 

probability that any other cut fails 

 

Two main reasons: 

 The expected capacity E[CN-1] is 

the smallest 

 The expected number of edges is 

the smallest:  nM(N-n)/N =M 

when n=N-1 
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Improved P2P control scheme should focus on 

improving the capacity of the last cut 
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Insights for P2P Protocol Design 

ON/OFF status of each 
peer’s upload capacity: 

 

 A common wisdom is that 
peers close to the server 
should choose ON peers as 
downstream neighbors 

 

 Our analysis indicates that 
only the server needs to be 
careful choosing ON peers.  

 

Low-overhead P2P control scheme could focus on 

peer-selection and recovery at the server only. 

s 

t 
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Insights for P2P Protocol Design 

Number of neighbors that each peer needs: M = a logN 

 

 In order that  

 

 

    the constant a must be 

 

 

 Require a larger number of neighbors when 

 faster convergence rate (larger d) 

 fewer high bandwidth users (smaller p) 

 higher streaming rate requirement (smaller e ) 

 This factor may be further reduced by improving the capacity of the last cut 
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Simulation Result – Single Channel 

p = 0.9 

e = 0.3 
p = 0.5 

e = 0.3 

p = 0.9 

e = 0.2 p = 0.5 

e = 0.2 
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Adaptive Rate Allocation: Motivation 

 Number of neighbors each peer needs M = a logN 

 

 

 As ²  0, ® increases inversely proportional to ²2 

 The number of neighbors of each peer can still be quite large 

 Recall that the most critical cut is the last cut CN-1 

 The capacity that each peer receives directly from its 

immediate upstream neighbors 

 

 Will improving the capacity of the last cut reduce a ? 
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From Uniform to Adaptive Rate Allocation 

 Adaptive rate-allocation:  Balance the capacity of the last cut by carefully 

assigning Cij (the upload rate from peer i to peer j) 

 

 

 

 

 

 

 

 

:   

, for all ,    and ij i

j i j

C u i



:   

(1 ) , for all ij f

i i j

C C je


 

Caveat: no capacity guarantee on all other cuts! 
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Uniform rate-allocation: 

 Each edge from an ON peer 
contributes u/M  capacity 

 However, the number of such 

edges to a peer is random 
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Uniform versus Adaptive Rate Allocation: 

Pros and Cons 

 Uniform rate allocation 

 The last cut is the most difficult 

 Other cuts have larger capacity 

 Adaptive rate allocation 

 Balance the capacity for the last cut 

 No capacity guarantee for other cuts 

 

 Hybrid scheme  

 Reserve a fraction of the upload capacity of each peer for 

uniform rate allocation 

 Perform adaptive rate allocation with the remaining upload 

capacity 
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Hybrid Scheme - Details 

 Still perform random peer-selection 

 Each link capacity Cij consists of two parts 

 

 Reserve a fraction q of the upload capacity for uniform allocation 

 

 Take care of all other cuts with high probability 

 The capacity          for adaptive 

rate allocation is given by the 

the  solution of 

 

 

 

 The solution exists with high probability          take care of the last cut. 

 There exist fully-distributed algorithms to compute the solution. 
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Hybrid Scheme - Main Result 

 For 0.5 < q < 1, the hybrid scheme could achieve a close-to-

optimal streaming rate with high probability  

 

 

if 

 

 

 
 

 The dependency on small ε  is virtually eliminated! 

 Assume q =0.9, e = 0.1 

 Uniform rate allocation: a > 400dus/pu 

 Hybrid Scheme: a > 17.8dus/pu 
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Hybrid Scheme – Simulation Result 

p = 0.5 

e = 0.2 

Less than 0.4% 

About 8% 

Hybrid (N=10000) Uniform (N=10000) 
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Multi-Channel P2P networks  

 Existing P2P systems typically serve a large number of 
channels/videos at the same time 

 Traditionally, each channel is treated separately 

 Peers viewing a channel only serve other peers in the same channel 

 View-Upload Decoupling (VUD [Wu et. al. 2009]) 

 Peers can view one channel but serve/upload videos for peers in a 
different channel 

 Streaming capacity for multi-channel P2P system is improved 

 Still assume complete connectivity and centralized operation 

 Our work 

 We propose a simple distributed scheme that has a similar flavor of 
VUD  

 Close-to-optimal streaming capacity region can still be achieved for 
multi-channel systems 
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Multi-channel - System Model 

 Consider a multi-channel P2P system with J different channels 

 Nj:  the set of peers that are viewing channel j 

 Nj=| Nj | : The number of peers in channel j 

 us,j :  the capacity that server allocates to channel j  

 Rj:  the targeted streaming rate of channel j 

 For each single channel, the optimal achievable streaming rate is 

 

 

 

 For a given R,  

 some channels may have a Cf,j >Rj,           sufficient channels 

 some channels may have a Cf,j <Rj            insufficient channels 
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Multi-channel – View-Upload Decoupling 

 VUD: Some peers from the  

sufficient channels become  

helpers to help improving the 

performance of the insufficient  

channels 
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Multi-channel - Helper 

 A helper that is viewing channel k and helping channel j 

 Receives full streaming rate Rk  of the content of channel k 

 Must be ON 

 Receives a rate u/M of the content of channel j 

 All of its downstream neighbors are peers viewing channel j 

 
…

 …
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Multi-channel: Capacity Region 

 Rj : the targeted streaming rate of channel j 

 We can define the capacity region L as the set of 

streaming rate vectors R =[R1,R2 ,…,RJ]
T such that any  

R  L is supportable by some control algorithm. 

 The largest possible capacity region 

 

 

 

 

 Given R  (1-²) L, can this rate vector R be achieved by 

a simple and distributed control scheme?  

 

 

 

Total capacity 

demand 

1 1

,
J J

j j s i j s

j i V j

N R u u R u
  

  
L     

  
  R

Total 

upload 

capacity 

37 



Multi-channel - Algorithm 

 Let Hj be the number of helpers that channel j needs 

 We would like to choose Hj so that  

 

 

 

 One solution: 

 

 

 

 Hj > 0 for an insufficient channel (needing helpers) 

 Hj < 0 for a sufficient channel (providing helpers) 

 

 

 

 

 

 

 

,

, ,min ,
1

j j
s j i ii i j

f j s j

j

u u u R
C u

N e

 
   

  
  

 

,

(1 )

j j s j

j j

N R u
H pN

u ue

 
   

 

38 



Insufficient Channel j 

Channel k Helping Channel j 

 Each helper behaves like an OFF peer in channel k 

 Each ON peer in channel j reserves K (downstream) slots for helpers 

 Each helper finds a normal ON peer randomly from channel j as its 
upstream neighbor 

 Each helper picks M downstream peers randomly from channel j 

 Uniform rate allocation. Helpers do not connect to helpers 
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Sufficient Channel k 

K downstream 

helpers 
M-K downstream 

peers 

h 
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Multi-channel – Main Result 

 For any e0 , d >1 and R  1eL , there exists a such that  

if M = a logN, then for all channel j 

 

 

 

 Nj: The set of peers that are viewing channel j 

 L is the largest possible capacity region. 

 

 Our proposed scheme can achieve close-to-optimal capacity with 

sparse connectivity and decentralized control.  

 Each peer still needs only O(log N) neighbors 

 Helpers are chosen randomly 
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Simulation Result – Multi-Channel 
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Overview 
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 Single-Channel: Uniform Rate Allocation 
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 Conclusion and Discussion 
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Summary 

 Close-to-optimal streaming capacity can be achieved with 
high probability using 
 O(log N) downstream neighbors for each peer 

 Random peer-selection 

 Uniform rate-allocation 

 Our results reveal important insights into the dynamics of 
large P2P streaming systems 

 Based on these insights, we design a hybrid scheme that 
further improves the system performance. 

 With “helpers”, a similarly simple scheme could also 
achieve a close-to-optimal streaming capacity region for 
multi-channel P2P systems 
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On-Going and Future Work 

 P2P  Video-on-Demand (VoD) Systems 

 Timing of each neighbor is important 

 Users may jump forward/backward 

 Cache placement policy is also critical 

 We show that simple and distributed control with sparse-

connectivity will still suffice 
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On-Going and Future Work 
 The packet scheduling problem 

 May use generation-based random linear network coding.  

 There is a tradeoff between rate, delay, and overhead 

 BATS code? 

 

 Incorporating scalable video 
 Video encoding rate may be adjusted based on the optimal streaming rate 

 Layered video 

 

 Multiple ISPs 
 Cross-ISP traffic may encounter new bottlenecks  

 Will random peer-selection and simple rate-allocation strategies still be 
sufficient? 

 

 Wireless versus wireline 
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