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Significant Growth of Internet Video Traffic
Exabytes per Month
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Online gaming and VolP forecast to be 0.79% of all consumer Internet traffic in 2015.
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» Internet video service providers:Youtube, Netflix,and many other.

» Consumer IP traffic will grow at a compound annual growth rate (CAGR) of 34%.

» By 2012, Internet video will account for over 50% of consumer Internet traffic.

» The sum of all video traffic (including TV, file sharing etc) will reach 90% of total IP

traffic in 2015.



Video Streaming in the Internet:
Current Status

» Video streaming directly from
servers or CDNs (Content
Distribution Networks) is costly

» In the US, this has been the
dominant mode for video streaming

Credit Suisse estimated Youtube
bandwidth cost in 2009 : $360M per
year

Google likely paid significantly less
due to peering with other ISP

client client

» Licensing of video content could
cost comparably or even more.

Netflix’s lost deal with Starz:
$300M for possibly a 5-year license



P2P Video Streaming: Current Status

4

Peer-to-peer (P2P) video streaming
can potentially be much more
scalable

Each client also contributes its
upload capacity.
In Asia, P2P streaming has become
commercially successful

PPLive, UUSee, PPStream, etc.

However, content has primarily been
free or pirated

High-value content appears to also
move towards the server mode

'”‘“”i server

S client

S =
client client

Why hasn’t P2P caught on yet for high-value content?



P2P Video Streaming: Issues

» Copyright issues!?

server

S =

client

» Lack of quality-of-service
guarantees!

» Difficulty to maintain QoS in
P2P systems:

Client upload capacity is time-varying

Peer “churns” = ==
Large scale client client

Decentralized view and operation

Why hasn’t P2P caught on yet for high-value content?
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Gap Between Practice and Theory

4

4

Theoretical understanding of P2P streaming performance has
significantly lag behind practice, which may have impeded
further advance of P2P streaming.

Our Focus: What is the best streaming rate C; that
a live-streaming P2P system can
reliably support!?

server: u,

lient: u4

Assuming upload capacity is the
only constraint [Kumar et al ‘07]:

C; <min{u,, }
Question: Can this upper bound A

be attained?

Client: u4 Client: u,



P2P Streaming Capacity

» Assume a complete graph: every peer can serve all other
peers simultaneously [Mundinger et al ’05, Chiu et al '06,
Kumar et al ‘07]

» Each client gets
Zu . Zuj
u | e 1 + J#l
A us +yui
N

:Cf

» How practical is this
analysis?

Client: u,
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P2P Streaming Capacity

Such theoretical analysis is far from the reality in
practical P2P systems!

» Real P2P streaming systems are sparsely connected:

Each peer only knows a small subset of other peers
(neighbors).

Infeasible for each peer to know all other peers!

» Real P2P systems are distributed:

No central entity can have the global/up-to-date knowledge
to perform such a perfect rate allocation.



» A multi-tree topology [Liu et al. 2010]
Still a centralized construction.

More recent work uses distributed

Markov approximation [Zhang
and Chen, 2012]

» If a peer close to the root
leaves or its upload capacity
decreases, significant
performance
disruption will occur.

Open Question:

» Can we achieve close-to-optimal streaming capacity with sparse
connectivity and decentralized control that are robust against peer churns
and variations of upload capacity ?
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Our Contribution

4

We show that a simple distributed scheme is sufficient to
achieve close-to-optimal streaming capacity with high
probability for large P2P systems.

Each peer has a small number of downstream neighbors

M = O(log N)
Each peer can choose neighbors uniformly randomly

Each peer evenly divides its upload capacity among the M neighbors

Our results reveal important insights into the dynamics of large
P2P systemes.

We design improved control schemes based on these insights
that further improve the system performance.

Our work provides an important step towards understanding
and controlling QoS in large and unreliable P2P streaming
systems.
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Overview

» System Model

» Single-Channel: Uniform Rate Allocation
» Single-Channel: Adaptive Rate Allocation
» Multi-Channel Live Streaming

» Conclusion and Discussion



System Model: Single-Channel P2P Live
Streaming with Random Peer Selection

N: number of peers u =
U;: the upload capacity
of peer |

u, with prob. p
0, with prob. 1- p

U, : the upload
capacity of server

OFF

» Random peer-selection:
Each peer randomly selects /M downstream neighbors
Server randomly selects M ON peers as downstream neighbors
Easy to implement and robust to peer churns.

» Cjj: the capacity that peer I contributes to peer .

» C;;=0 if peer i is OFF or peer j is not a downstream neighbor of peer i

> C;<uand » C,<u,
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System Model

» Streaming rate to destination peer t:

The minimum cut between s and t: C_.-

(s > 1)

A directed
capacitated
graph

» The streaming rate of the entire system:
The minimum cut across all destination peers t:

C S—>V):rp€§/ncmm(s—>t)

Can be achieved in a distributed manner by network coding [Ahlswede
et al 2000] or a latest-useful-chunk transmission policy [Massoulie and

Twigg 2008]

min—min (
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Problem Statement

» (' The optimal streaming capacity assuming complete
connectivity and centralized control

E[C,]= min{us-}

» Research Problems:

How much performance penalty (compare to the optimal C)
is incurred due to random peer-selection?

Are there simple and robust rate-allocation schemes that can
achieve close-to-optimal capacity with minimal overhead!?
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Single-Channel: Uniform Rate-Allocation

N: number of peers U = u, W-Ith prob. p
U;: the upload capacity 0, with prob. 1- p
of peer |

U, : the upload
capacity of server

ON

OFF
» Uniform rate-allocation:
Each peer evenly divides its upload capacity to its M downstream neighbors
Same for server
» Cjj: the link capacity from peer I to peer J.
u/M, ifpeeriisONandi — |
” _{O, otherwise



Main Result

>/For any ¢ € (0,1) and d >1, there exists > 0 such that
if M= alogN,then

P(Cpr (5 V) < (1— £)EIC, ]) < o(Niﬂj

o

\

» Even with simple random peer-selection and uniform
rate-allocation, the system can achieve close-to-optimal
streaming capacity with very high probability!



Implications

» Sparse connectivity is sufficient!
M = a logN

» Simple and decentralized control

Random peer selection and uniform rate-
allocation

» Larger is better!
The larger the network size, the easier to achieve

close-to-optimal capacity

» Robustness

Even if a peer leaves, only its upstream peer needs
to re-select a downstream neighbor.

When a peer switches from ON to OFF its
neighbors do not need to change anything (unless
it is connected to the server directly).

No need to reconstruct the global topology!

Large P2P streaming
systems are in fact
extremely

scalable

and

robust!



Intuition Behind the Main Result

n ON peers Y-n ON peers

» Fix a destination peer t. Suppose that peer tis ON.
» Let Y be the total number of ON peers: Y ~ Np

» C, :the random capacity of a cut that has n ON peers on the server side
u,, 1Ifn=0

uS(Y—n)Jrun(Y—n):<US+UIO|\I
Y N

>
EIC, IY]= fn=Y -1




Intuition Behind the Main Result

“first cut” C, “last cut” Cy.4

» Two special cases:

E[C,|Y =Np] Zé

» For all other n, we have

E[C.]> E[C, ]2 min{u,,

» Since the number of edges in a cut, nM(Y-n)/N, is large when M andN increase,
20 the capacity of any cut C, should be no less than (1—¢) C; with high probability



Insights for P2P Protocol Design

The most critical cut is the last cut
Crot Cra

» The probability that C_; fails (less
than (1-£&) of optimal streaming rate
C,) is much larger than the
probability that any other cut fails

Two main reasons:

» The expected capacity E[C, 4] is

the smallest E[C,,|Y =Np]

» The expected number of edges is u, +UupN
the smallest: nM(N-n)/N =M = =E[C/]
when n=N-1

Improved P2P control scheme should focus on
improving the capacity of the last cut
21



Insights for P2P Protocol Design

ON/OFF status of each
peer’s upload capacity:

» A common wisdom is that
peers close to the server
should choose ON peers as
downstream neighbors

» Our analysis indicates that
only the server needs to be
careful choosing ON peers.

Low-overhead P2P control scheme could focus on
peer-selection and recovery at the server only.
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Insights for P2P Protocol Design

Number of neighbors that each peer needs: M = o log/V

» In order that

P(Copr (5 V) < (1— £)EIC, ]) < o(N}dlj

the constant & must be

» Require a larger number of neighbors when
faster convergence rate (larger d)
fewer high bandwidth users (smaller p)

higher streaming rate requirement (smaller ¢)

» This factor may be further reduced by improving the capacity of the last cut
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Simulation Result — Single Channel
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Adaptive Rate Allocation: Motivation

» Number of neighbors each peer needs M = a logN
. 4du,
pus’

As ¢ — 0, « increases inversely proportional to €

The number of neighbors of each peer can still be quite large

» Recall that the most critical cut is the last cut C,

The capacity that each peer receives directly from its
immediate upstream neighbors

» Will improving the capacity of the last cut reduce o ?
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From Uniform to Adaptive Rate Allocation

Uniform rate-allocation:

t1 » Each edge from an ON peer
contributes u/M capacity

» However, the number of such
edges to a peer is random

» Adaptive rate-allocation: Balance the capacity of the last cut by carefully
assigning C; (the upload rate from peer I to peer J)

[ > C;<u, forall i} and{ > C,=(@1-¢)C,, forall J

-] il —]

Caveat: no capacity guarantee on all other cuts!

27



Uniform versus Adaptive Rate Allocation:
Pros and Cons

» Uniform rate allocation
The last cut is the most difficult
Other cuts have larger capacity

» Adaptive rate allocation
Balance the capacity for the last cut

No capacity guarantee for other cuts

» Hybrid scheme

Reserve a fraction of the upload capacity of each peer for
uniform rate allocation

Perform adaptive rate allocation with the remaining upload
capacity

28



Hybrid Scheme - Details

» Still perform random peer-selection

» Each link capacity C;; consists of two parts

u S
C,=CY +C;

» Reserve a fraction @ of the upload capacity for uniform allocation
C; =6u, /M

Take care of all other cuts with high probability 2
» The capacity Ci? for adaptive VI_'_CiSl

rate allocation is given by the
the solution of

> C; <(1-0)u, forall 1 9 y
ji—j

Z CiliJ +C§’ >(1-¢£)C;, forall

i—j

» The solution exists with high probability B8 take care of the last cut.

» There exist fully-distributed algorithms to compute the solution.
29



Hybrid Scheme - Main Result

4

4
4

/For 0.5 < @< 1, the hybrid scheme could achieve a close-to-

optimal streaming rate with high probability

P(Cpr (5 V) < (L— £)E[C, ]) < o( 1]
\_ N

~

J

if

a > max-

\ J L J
! !

For other cuts  For the last cuts
The dependency on small € is virtually eliminated!

Assume 0=0.9, ¢=0.1

Uniform rate allocation: o > 400du//pu
Hybrid Scheme: o > 17.8du /pu
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Hybrid Scheme — Simulation Result

Less than 0.4%

About 8%

— 1 \ - — 1

<) u O

| 08] - p=05| 1 0.8

- | £=0.2 x

06| ] ﬁ 06

04 ] ., 04f

0.2 702

E' - ‘ | ' C ola=s S -

0% 0.2% 0.4% 0.6% 0.8% 1.0% A 0% 2% 4% 6% 8%

Number of downstream neighbors A as a fraction of N Number of downstream neighbors M as a fraction of N

Hybrid (N=10000) Uniform (N=10000)

31



Overview

» System Model

» Single-Channel: Uniform Rate Allocation
» Single-Channel: Adaptive Rate Allocation
» Multi-Channel P2P Live Streaming

» Conclusion and Discussion

32



Multi-Channel P2P networks

» Existing P2P systems typically serve a large number of
channels/videos at the same time

» Traditionally, each channel is treated separately
Peers viewing a channel only serve other peers in the same channel

» View-Upload Decoupling (VUD [Wu et. al. 2009])

Peers can view one channel but serve/upload videos for peers in a
different channel

Streaming capacity for multi-channel P2P system is improved
Still assume complete connectivity and centralized operation

» Our work

We propose a simple distributed scheme that has a similar flavor of
vUD

Close-to-optimal streaming capacity region can still be achieved for
multi-channel systems
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Multi-channel - System Model

» Consider a multi-channel P2P system with J different channels

v

./\/}: the set of peers that are viewing channel |

N;=| | : The number of peers in channel

» Ug;: the capacity that server allocates to channel |

v

R;: the targeted streaming rate of channel |

» For each single channel, the optimal achievable streaming rate is

| N

j

§ J

-

C;,=minqu

S,

» For a given R,
some channels may have a Cy; >R;, mm) sufficient channels

some channels may have a Cy; <R mm) insufficient channels
34



Multi-channel — View-Upload Decoupling

» VUD: Some peers from the
sufficient channels become
helpers to help improving the
performance of the insufficient
channels

Insufficient Channel
Sufficient Channel
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Multi-channel - Helper

» A helper that is viewing channel k and helping channel |
Receives full streaming rate R, of the content of channel Kk
Must be ON
Receives a rate U/M of the content of channel |

All of its downstream neighbors are peers viewing channel |

Channel Channel k

36



Multi-channel: Capacity Region

» R;:the targeted streaming rate of channel

» We can define the capacity region A as the set of
streaming rate vectors R =[R,R, ,...,R;]" such that any
R € A is supportable by some control algorithm.

» The largest possible capacity region

J J
. 1= j=1 )

Total capacity ~ Total

demand upload
capacity

» Given R € (l-€) A, can this rate vector R be achieved by
a simple and distributed control scheme!?
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Multi-channel - Algorithm

» Let H; be the number of helpers that channel j needs

» We would like to choose Hj so that

] us’j +Zie/\fj u'@ RJ
C; ;=minsu, > =

> N, 1-¢

\ J

» One solution:

N;R; g
Hj = ——=— PN,
1-g)u u

Hj > 0 for an insufficient channel (needing helpers)

H; < 0 for a sufficient channel (providing helpers)

38



Channel k Helping Channel j

Insufficient Channel j Sufficient Channel &

>

Each helper behaves like an OFF peer in channel £
Each ON peer in channel j reserves K (downstream) slots for helpers

Each helper finds a normal ON peer randomly from channel j as its
upstream neighbor

Each helper picks M downstream peers randomly from channel



Multi-channel — Main Result

>/For any &0 ,d >1 and R € (1-¢g)A , there exists « such that A
if M = a logN, then for all channel j
1
( min-— mln(S_)N) R) O(NZdlj
N J

> /\/]:The set of peers that are viewing channel |

» Ais the largest possible capacity region.

» Our proposed scheme can achieve close-to-optimal capacity with
sparse connectivity and decentralized control.

Each peer still needs only O(log N) neighbors

Helpers are chosen randomly
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Simulation Result — Multi-Channel
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Summary

» Close-to-optimal streaming capacity can be achieved with
high probability using
O(log N) downstream neighbors for each peer
Random peer-selection
Uniform rate-allocation

» Our results reveal important insights into the dynamics of
large P2P streaming systems

» Based on these insights, we design a hybrid scheme that
further improves the system performance.

» With “helpers”, a similarly simple scheme could also
achieve a close-to-optimal streaming capacity region for
multi-channel P2P systems
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On-Going and Future Work
» P2P Video-on-Demand (VoD) Systems

Timing of each neighbor is important
Users may jump forward/backward
Cache placement policy is also critical

We show that simple and distributed control with sparse-
connectivity will still suffice
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On-Going and Future Work

» The packet scheduling problem
May use generation-based random linear network coding.

There is a tradeoff between rate, delay, and overhead
BATS code?

» Incorporating scalable video
Video encoding rate may be adjusted based on the optimal streaming rate
Layered video

» Multiple ISPs

Cross-ISP traffic may encounter new bottlenecks

Will random peer-selection and simple rate-allocation strategies still be
sufficient?

» Wireless versus wireline
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Thank You!

Can Zhao, Xiaojun Lin and Chuan Wu ""The Streaming Capacity of
Sparsely-Connected P2P Systems with Distributed Control," in IEEE
INFOCOM, Shanghai, China, April 201 |
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